enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  3. Entropy of activation - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_activation

    for reactions in solution and unimolecular gas reactions A = (ek B T/h) exp(ΔS ‡ /R), while for bimolecular gas reactions A = (e 2 k B T/h) (RT/p) exp(ΔS ‡ /R). In these equations e is the base of natural logarithms, h is the Planck constant, k B is the Boltzmann constant and T the absolute temperature. R′ is the ideal gas constant. The ...

  4. Flory–Huggins solution theory - Wikipedia

    en.wikipedia.org/wiki/Flory–Huggins_solution...

    Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing. The result is an equation for the Gibbs free energy change for mixing a polymer with a solvent. Although it makes simplifying ...

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    = ⁡, where k B is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability. d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}} , for reversible processes only

  6. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    The above change in composition is in accordance with Le Chatelier's principle and does not involve any change of the equilibrium constant with the total system pressure. Indeed, for ideal-gas reactions K p is independent of pressure. [17] Pressure dependence of the water ionization constant at 25 °C.

  7. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    Mathematically, the absolute entropy of any system at zero temperature is the natural log of the number of ground states times the Boltzmann constant k B = 1.38 × 10 −23 J K −1. The entropy of a perfect crystal lattice as defined by Nernst's theorem is zero provided that its ground state is unique, because ln(1) = 0.

  8. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [23] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.

  9. Determination of equilibrium constants - Wikipedia

    en.wikipedia.org/wiki/Determination_of...

    It then appears that the equilibrium constant, has the dimension 1/concentration, but that cannot be true since the standard Gibbs free energy change, is proportional to the logarithm of . Δ G ⊖ = − R T ln ⁡ K A ⊖ {\displaystyle \Delta G^{\ominus }=-RT\ln {K_{A}^{\ominus }}}