Search results
Results from the WOW.Com Content Network
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Deep learning is a type of machine learning that runs inputs through biologically inspired artificial neural networks for all of these types of learning. [ 48 ] Computational learning theory can assess learners by computational complexity , by sample complexity (how much data is required), or by other notions of optimization .
Bayesian methods are introduced for probabilistic inference in machine learning. [1] 1970s 'AI winter' caused by pessimism about machine learning effectiveness. 1980s: Rediscovery of backpropagation causes a resurgence in machine learning research. 1990s: Work on Machine learning shifts from a knowledge-driven approach to a data-driven approach.
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]
For Dummies is an extensive series of instructional reference books which are intended to present non-intimidating guides for readers new to the various topics covered. The series has been a worldwide success with editions in numerous languages.
The book outlines five approaches of machine learning: inductive reasoning, connectionism, evolutionary computation, Bayes' theorem and analogical modelling. The author explains these tribes to the reader by referring to more understandable processes of logic, connections made in the brain, natural selection, probability and similarity ...
Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness. [ 1 ]
Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources ...