Search results
Results from the WOW.Com Content Network
A graph with three components. In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting ...
For example, a 10 knot wind coming at 45 degrees from either side will have a crosswind component of 10 knots × sin(45°) and a head/tailwind component of 10 knots × cos(45°), both equals to 7.07 knots. Pilots can use a use a crosswind component chart to calculate the headwind component and the crosswind component. The red line in this image ...
A graph, containing vertices and connecting edges, is constructed from relevant input data. The vertices contain information required by the comparison heuristic, while the edges indicate connected 'neighbors'. An algorithm traverses the graph, labeling the vertices based on the connectivity and relative values of their neighbors.
A strongly connected component C is called trivial when C consists of a single vertex which is not connected to itself with an edge, and non-trivial otherwise. [1] The yellow directed acyclic graph is the condensation of the blue directed graph. It is formed by contracting each strongly connected component of the blue graph into a single yellow ...
The doubly connected edge list (DCEL), also known as half-edge data structure, is a data structure to represent an embedding of a planar graph in the plane, and polytopes in 3D. This data structure provides efficient manipulation of the topological information associated with the objects in question (vertices, edges, faces).
In graph theory, a branch of mathematics, the triconnected components of a biconnected graph are a system of smaller graphs that describe all of the 2-vertex cuts in the graph. An SPQR tree is a tree data structure used in computer science , and more specifically graph algorithms , to represent the triconnected components of a graph.
Tarjan's strongly connected components algorithm is an algorithm in graph theory for finding the strongly connected components (SCCs) of a directed graph. It runs in linear time , matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm .
In graph theory, the strongly connected components of a directed graph may be found using an algorithm that uses depth-first search in combination with two stacks, one to keep track of the vertices in the current component and the second to keep track of the current search path. [1]