Search results
Results from the WOW.Com Content Network
Neurofilaments (NF) are classed as type IV intermediate filaments found in the cytoplasm of neurons. They are protein polymers measuring 10 nm in diameter and many micrometers in length. [1] Together with microtubules (~25 nm) and microfilaments (7 nm), they form the neuronal cytoskeleton.
[1] [5] Animal intermediate filaments are subcategorized into six types based on similarities in amino acid sequence and protein structure. [6] Most types are cytoplasmic, but one type, Type V is a nuclear lamin. Unlike microtubules, IF distribution in cells shows no good correlation with the distribution of either mitochondria or endoplasmic ...
While cellular processes can be supported by any of the three major components of the cytoskeleton—microfilaments (actin filaments), intermediate filaments (IFs), or microtubules—, lamellipodia are primarily driven by the polymerization of actin microfilaments, not microtubules. [3] [20]
Eukaryotic cells contain three main kinds of cytoskeletal filaments: microfilaments, microtubules, and intermediate filaments. In neurons the intermediate filaments are known as neurofilaments. [16] Each type is formed by the polymerization of a distinct type of protein subunit and has its own characteristic shape and intracellular distribution ...
Microtubules play an important role in a number of cellular processes. They are involved in maintaining the structure of the cell and, together with microfilaments and intermediate filaments, they form the cytoskeleton. They also make up the internal structure of cilia and flagella.
Multicolor fluorescence image of a neuron. Neurotubules are stained in green and mitochondria are stained in red. Structure of a neurotubule. Neurotubules are microtubules found in neurons in nervous tissues. [1] Along with neurofilaments and microfilaments, they form the cytoskeleton of neurons.
The eukaryotic cytoskeleton is composed of microtubules, intermediate filaments and microfilaments. In the cytoskeleton of a neuron the intermediate filaments are known as neurofilaments. There are a great number of proteins associated with them, each controlling a cell's structure by directing, bundling, and aligning filaments. [2]
These 10 nm filaments are made up of polypeptide chains, which belong to the same family as intermediate filaments. Intermediate filaments are not involved with the direct movement of cells unlike microtubules and microfilaments. Intermediate filaments can play a role in cell communication in a process known as crosstalk.