Search results
Results from the WOW.Com Content Network
The protein composition of neurofilaments varies widely across different animal phyla. Most is known about mammalian neurofilaments. Historically, mammalian neurofilaments were originally thought to be composed of just three proteins called neurofilament protein NF-L (low molecular weight; NF-L), NF-M (medium molecular weight; NF-M) and NF-H (high molecular weight; NF-H).
[1] [5] Animal intermediate filaments are subcategorized into six types based on similarities in amino acid sequence and protein structure. [6] Most types are cytoplasmic, but one type, Type V is a nuclear lamin. Unlike microtubules, IF distribution in cells shows no good correlation with the distribution of either mitochondria or endoplasmic ...
Eukaryotic cells contain three main kinds of cytoskeletal filaments: microfilaments, microtubules, and intermediate filaments. In neurons the intermediate filaments are known as neurofilaments. [16] Each type is formed by the polymerization of a distinct type of protein subunit and has its own characteristic shape and intracellular distribution ...
While cellular processes can be supported by any of the three major components of the cytoskeleton—microfilaments (actin filaments), intermediate filaments (IFs), or microtubules—, lamellipodia are primarily driven by the polymerization of actin microfilaments, not microtubules. [3] [20]
Microtubule and tubulin metrics [1]. Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm [2] and have an inner diameter between 11 and 15 nm. [3]
Multicolor fluorescence image of a neuron. Neurotubules are stained in green and mitochondria are stained in red. Structure of a neurotubule. Neurotubules are microtubules found in neurons in nervous tissues. [1] Along with neurofilaments and microfilaments, they form the cytoskeleton of neurons.
These 10 nm filaments are made up of polypeptide chains, which belong to the same family as intermediate filaments. Intermediate filaments are not involved with the direct movement of cells unlike microtubules and microfilaments. Intermediate filaments can play a role in cell communication in a process known as crosstalk.
Microtubules are assembled from dimers of α- and β-tubulin. These subunits are slightly acidic, with an isoelectric point between 5.2 and 5.8. [14] Each has a molecular weight of approximately 50 kDa. [15] To form microtubules, the dimers of α- and β-tubulin bind to GTP and assemble onto the (+) ends of microtubules while in the GTP-bound ...