Search results
Results from the WOW.Com Content Network
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del. The notation grad f is also commonly used to represent the gradient.
If W is a vector field with curl(W) = V, then adding any gradient vector field grad(f) to W will result in another vector field W + grad(f) such that curl(W + grad(f)) = V as well. This can be summarized by saying that the inverse curl of a three-dimensional vector field can be obtained up to an unknown irrotational field with the Biot–Savart ...
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...
In differential geometry, the four-gradient (or 4-gradient) is the four-vector analogue of the gradient from vector calculus. In special relativity and in quantum mechanics , the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors .
The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b
Vector operators include: Gradient is a vector operator that operates on a scalar field, producing a vector field. Divergence is a vector operator that operates on a vector field, producing a scalar field. Curl is a vector operator that operates on a vector field, producing a vector field. Defined in terms of del: