Ad
related to: integer relation algorithm worksheet answers sheet samplekutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
An integer relation algorithm is an algorithm for finding integer relations. Specifically, given a set of real numbers known to a given precision, an integer relation algorithm will either find an integer relation between them, or will determine that no integer relation exists with coefficients whose magnitudes are less than a certain upper bound .
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10 100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log 2 n ⌋ + 1 bits) is of the form
When used to find integer relations, a typical input to the algorithm consists of an augmented identity matrix with the entries in the last column consisting of the elements (multiplied by a large positive constant to penalize vectors that do not sum to zero) between which the relation is sought. The LLL algorithm for computing a nearly ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly.
An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.
Using repeated squaring, the running time of this algorithm is O(k n 3), for an n-digit number, and k is the number of rounds performed; thus this is an efficient, polynomial-time algorithm. FFT-based multiplication, for example the Schönhage–Strassen algorithm, can decrease the running time to O(k n 2 log n log log n) = Õ(k n 2).
Ad
related to: integer relation algorithm worksheet answers sheet samplekutasoftware.com has been visited by 10K+ users in the past month