Search results
Results from the WOW.Com Content Network
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [ 4 ] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi.
A regular triangle, octagon, and icositetragon can completely fill a plane vertex. An icositetragram is a 24-sided star polygon. There are 3 regular forms given by Schläfli symbols: {24/5}, {24/7}, and {24/11}. There are also 7 regular star figures using the same vertex arrangement: 2{12}, 3{8}, 4{6}, 6{4}, 8{3}, 3{8/3}, and 2{12/5}.
Any polygon has as many corners as it has sides. Each corner has several angles. The two most important ones are: Interior angle – The sum of the interior angles of a simple n-gon is (n − 2) × π radians or (n − 2) × 180 degrees. This is because any simple n-gon ( having n sides ) can be considered to be made up of (n − 2) triangles ...
The regular decagon has Dih 10 symmetry, order 20. There are 3 subgroup dihedral symmetries: Dih 5, Dih 2, and Dih 1, and 4 cyclic group symmetries: Z 10, Z 5, Z 2, and Z 1. These 8 symmetries can be seen in 10 distinct symmetries on the decagon, a larger number because the lines of reflections can either pass through vertices or edges.
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex or star .
A regular digon has both angles equal and both sides equal and is represented by Schläfli symbol {2}. It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, when it forms a lune. The digon is the simplest abstract polytope of rank 2. A truncated digon, t{2} is a square, {4}. An alternated digon, h{2} is a ...
[2] [3] A kite may also be called a dart, [4] particularly if it is not convex. [5] [6] Every kite is an orthodiagonal quadrilateral (its diagonals are at right angles) and, when convex, a tangential quadrilateral (its sides are tangent to an inscribed circle). The convex kites are exactly the quadrilaterals that are both orthodiagonal and ...