Search results
Results from the WOW.Com Content Network
This page was last edited on 16 February 2025, at 09:12 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
This statistics -related article is a stub. You can help Wikipedia by expanding it.
That is, independent 10-sample means should themselves have a standard deviation of 0.0316. It is natural that the means vary this much, for by the central limit theorem the means should have a normal distribution , regardless of the distribution of the samples themselves.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In this case, the slope of the fitted line is equal to the correlation between y and x corrected by the ratio of standard deviations of these variables. The intercept of the fitted line is such that the line passes through the center of mass ( x , y ) of the data points.
For example, if the mean height in a population of 21-year-old men is 1.75 meters, and one randomly chosen man is 1.80 meters tall, then the "error" is 0.05 meters; if the randomly chosen man is 1.70 meters tall, then the "error" is −0.05 meters.
The standard deviation is the square root of the variance. When individual determinations of an age are not of equal significance, it is better to use a weighted mean to obtain an "average" age, as follows: x ¯ ∗ = ∑ i = 1 N w i x i ∑ i = 1 N w i . {\displaystyle {\overline {x}}^{*}={\frac {\sum _{i=1}^{N}w_{i}x_{i}}{\sum _{i=1}^{N}w_{i}}}.}
In the above, z 1−α/2 is the quantile of the normal distribution; SE is the standard error, which can be computed by Bartlett's formula for MA ...