Search results
Results from the WOW.Com Content Network
In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.
In physics and engineering, particularly in mechanics, a physical vector may be endowed with additional structure compared to a geometrical vector. [3] A bound vector is defined as the combination of an ordinary vector quantity and a point of application or point of action.
differential vector element of surface area A, with infinitesimally small magnitude and direction normal to surface S: square meter (m 2) differential element of volume V enclosed by surface S: cubic meter (m 3) electric field: newton per coulomb (N⋅C −1), or equivalently, volt per meter (V⋅m −1)
The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive), their transformation properties (i.e. whether the quantity is a scalar, vector, matrix or tensor), and whether the quantity is conserved.
The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F. Force plays an important role in classical mechanics.
Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property.
Similarly, the momentum is a vector quantity and is represented by a boldface symbol: = (,,). The equations in the previous sections, work in vector form if the scalars p and v are replaced by vectors p and v. Each vector equation represents three scalar equations. For example,
Velocity is a physical vector quantity: both magnitude and direction are needed to define it. The scalar absolute value of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s −1). For example, "5 metres per second" is a scalar, whereas "5 metres per ...