Search results
Results from the WOW.Com Content Network
An extended context-free grammar (or regular right part grammar) is one in which the right-hand side of the production rules is allowed to be a regular expression over the grammar's terminals and nonterminals. Extended context-free grammars describe exactly the context-free languages.
In formal language theory, a context-free grammar is in Greibach normal form (GNF) if the right-hand sides of all production rules start with a terminal symbol, optionally followed by some variables. A non-strict form allows one exception to this format restriction for allowing the empty word (epsilon, ε) to be a member of the described language.
A parse tree or parsing tree [1] (also known as a derivation tree or concrete syntax tree) is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term parse tree itself is used primarily in computational linguistics; in theoretical syntax, the term syntax tree is more common.
To convert a grammar to Chomsky normal form, a sequence of simple transformations is applied in a certain order; this is described in most textbooks on automata theory. [4]: 87–94 [5] [6] [7] The presentation here follows Hopcroft, Ullman (1979), but is adapted to use the transformation names from Lange, Leiß (2009).
Deterministic context-free grammars were particularly useful because they could be parsed sequentially by a deterministic pushdown automaton, which was a requirement due to computer memory constraints. [4] In 1965, Donald Knuth invented the LR(k) parser and proved that there exists an LR(k) grammar for every deterministic context-free language. [5]
A weighted context-free grammar (WCFG) is a more general category of context-free grammar, where each production has a numeric weight associated with it. The weight of a specific parse tree in a WCFG is the product [7] (or sum [8]) of all rule weights in the tree. Each rule weight is included as often as the rule is used in the tree.
Synchronous context-free grammars (SynCFG or SCFG; not to be confused with stochastic CFGs) are a type of formal grammar designed for use in transfer-based machine translation. Rules in these grammars apply to two languages at the same time, capturing grammatical structures that are each other's translations.
Generalized context-free grammar (GCFG) is a grammar formalism that expands on context-free grammars by adding potentially non-context-free composition functions to rewrite rules. [1] Head grammar (and its weak equivalents) is an instance of such a GCFG which is known to be especially adept at handling a wide variety of non-CF properties of ...