Search results
Results from the WOW.Com Content Network
The PARI/GP system consists of the following standard components: PARI is a C library, allowing for fast computations, and which can be called from a high-level language application (for instance, written in C, C++, Pascal, Fortran, Perl, or Python). gp is an easy-to-use interactive command line interface giving
PARI/GP online calculator - https://pari.math.u-bordeaux.fr/gp.html (PARI/GP is a widely used computer algebra system designed for fast computations in number theory (factorizations, algebraic number theory, elliptic curves, modular forms, L functions...), but also contains a large number of other useful functions to compute with mathematical ...
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence.
The following tables provide a comparison of computer algebra systems (CAS). [1] [2] [3] A CAS is a package comprising a set of algorithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language.
Diagram illustrating three basic geometric sequences of the pattern 1(r n−1) up to 6 iterations deep.The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively.
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
where is the number of terms in the progression and is the common difference between terms. The formula is essentially the same as the formula for the standard deviation of a discrete uniform distribution , interpreting the arithmetic progression as a set of equally probable outcomes.
Book IX, Proposition 36 of Elements proves that if the sum of the first n terms of this progression is a prime number (and thus is a Mersenne prime as mentioned above), then this sum times the n th term is a perfect number. For example, the sum of the first 5 terms of the series 1 + 2 + 4 + 8 + 16 = 31, which is a prime number. The sum 31 ...