Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The Jones oxidation. Jones reagent is a solution prepared by dissolving chromium trioxide in aqueous sulfuric acid. To effect a Jones oxidation, this acidic mixture is then added to an acetone solution of the substrate. Alternatively, potassium dichromate can be used in place of chromium trioxide. The oxidation is very rapid and quite ...
Patch test. In 2005–06, potassium dichromate was the 11th-most-prevalent allergen in patch tests (4.8%). [12] Potassium dichromate is one of the most common causes of chromium dermatitis; [13] chromium is highly likely to induce sensitization leading to dermatitis, especially of the hand and forearms, which is chronic and difficult to treat ...
Infrared breathalyzers allow a high degree of specificity for ethanol. Typically evidential breath alcohol instruments in police stations will work on the principle of infrared spectroscopy. Fuel cell Fuel cell gas sensors are based on the oxidation of ethanol to acetaldehyde on an electrode. The current produced is proportional to the amount ...
The alcohol dehydrogenases comprise a group of several isozymes that catalyse the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively, and also can catalyse the reverse reaction. [19] In mammals this is a redox (reduction/oxidation) reaction involving the coenzyme nicotinamide adenine dinucleotide (NAD ...
The microsomal ethanol oxidizing system (MEOS) is an alternate pathway of ethanol metabolism that occurs in the smooth endoplasmic reticulum in the oxidation of ethanol to acetaldehyde. While playing only a minor role in ethanol metabolism in average individuals, MEOS activity increases after chronic alcohol consumption.
Oxidation can be achieved by heating the alcohol with an acidified solution of potassium dichromate. In this case, excess dichromate will further oxidize the aldehyde to a carboxylic acid, so either the aldehyde is distilled out as it forms (if volatile) or milder reagents such as PCC are used. [8]
Cr(VI)-pyridine and pyridinium reagents have the advantage that they are soluble in organic solvents as are the alcohol substrates. One family of reagents employs the complex CrO 3 (pyridine) 2. [2] Sarett's reagent: a solution of CrO 3 (pyridine) 2 in pyridine. It was popularized for selective oxidation of primary and secondary alcohols to ...