Search results
Results from the WOW.Com Content Network
The sound of each individual's voice is thought to be entirely unique [13] not only because of the actual shape and size of an individual's vocal cords but also due to the size and shape of the rest of that person's body, especially the vocal tract, and the manner in which the speech sounds are habitually formed and articulated. (It is this ...
Sound energy causes changes in the shape of these cells, which serves to amplify sound vibrations in a frequency specific manner. Lightly resting atop the longest cilia of the inner hair cells is the tectorial membrane, which moves back and forth with each cycle of sound, tilting the cilia, which is what elicits the hair cells' electrical ...
The human vocal cords are roughly 12 – 24 mm in length, and 3–5 mm thick. [9] Histologically, the human vocal cords are a laminated structure composed of five different layers. The vocalis muscle, main body of the vocal cords, is covered by the mucosa, which consists of the epithelium and the lamina propria. [10]
Voicing is a common period sound source in spoken language and is related to how closely the vocal cords are placed together. In English there are only two possibilities, voiced and unvoiced. Voicing is caused by the vocal cords held close by each other, so that air passing through them makes them vibrate.
In phonetics, the airstream mechanism is the method by which airflow is created in the vocal tract. Along with phonation and articulation, it is one of three main components of speech production. The airstream mechanism is mandatory for most sound production and constitutes the first part of this process, which is called initiation.
The lower pair of folds are known as the vocal cords, which produce sounds needed for speech and other vocalizations. The slit-like space between the left and right vocal cords, called the rima glottidis, is the narrowest part of the larynx. The vocal cords and the rima glottidis are together designated as the glottis.
The purpose of this frequency map (known as a tonotopic map) likely reflects the fact that the cochlea is arranged according to sound frequency. The auditory cortex is involved in tasks such as identifying and segregating "auditory objects" and identifying the location of a sound in space. For example, it has been shown that A1 encodes complex ...
Bone conduction is one reason why a person's voice sounds different to them when it is recorded and played back. Because the skull conducts lower frequencies better than air, people perceive their own voices to be lower and fuller than others do, and a recording of one's own voice frequently sounds higher than one expects (see voice confrontation).