Search results
Results from the WOW.Com Content Network
adrenal gland: Adrenal medulla / Tyrosine: noradrenergic receptor: nearly all tissues increases both systolic and diastolic blood pressure, glycogenolysis, lipolysis increases metabolism, etc. 4 Triiodothyronine: T 3: Amino acid derivative peripheral tissue of thyroid gland: Thyroid follicular cell / Tyrosine: thyroid hormone receptor: nearly ...
Today, neuroendocrinology embraces a wide range of topics that arose directly or indirectly from the core concept of neuroendocrine neurons. Neuroendocrine neurons control the gonads, whose steroids, in turn, influence the brain, as do corticosteroids secreted from the adrenal gland under the influence of adrenocorticotrophic hormone. The study ...
Adrenal glands, anterior (left) and posterior (right) surface. The adrenal glands are located on both sides of the body in the retroperitoneum, above and slightly medial to the kidneys. In humans, the right adrenal gland is pyramidal in shape, whereas the left is semilunar or crescent shaped and somewhat larger. [8]
Outside the brain, norepinephrine is used as a neurotransmitter by sympathetic ganglia located near the spinal cord or in the abdomen, as well as Merkel cells located in the skin. It is also released directly into the bloodstream by the adrenal glands.
The pituitary gland (or hypophysis) is an endocrine gland about the size of a pea and weighing 0.5 grams (0.018 oz) in humans. It is a protrusion off the bottom of the hypothalamus at the base of the brain, and rests in a small, bony cavity (sella turcica) covered by a dural fold (diaphragma sellae).
An example of a neuroendocrine cell is a cell of the adrenal medulla (innermost part of the adrenal gland), which releases adrenaline to the blood. The adrenal medullary cells are controlled by the sympathetic division of the autonomic nervous system. These cells are modified postganglionic neurons. Autonomic nerve fibers lead directly to them ...
Cushing's disease and Addison's disease are pathologies involving the dysfunction of the adrenal gland. Dysfunction in the adrenal gland could be due to primary or secondary factors and can result in hypercortisolism or hypocortisolism. Cushing's disease is characterized by the hypersecretion of the adrenocorticotropic hormone due to a ...
The locus coeruleus is the major source of noradrenergic innervation in the brain and sends widespread connections to rostral (cerebral cortex, hippocampus, hypothalamus) and caudal (cerebellum, brainstem nuclei) brain areas [23] and. [24] Indeed, an alteration of this structure could contribute to several symptoms observed in MECP2-deficient mice.