Search results
Results from the WOW.Com Content Network
Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.
Many plants lose much of the remaining energy on growing roots. Most crop plants store ~0.25% to 0.5% of the sunlight in the product (corn kernels, potato starch, etc.). Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about ...
These plants differ from C3 plants because CO 2 is initially converted to a four-carbon molecule, malate, which is shuttled to bundle sheath cells, released back as CO 2 and only then enters the Calvin Cycle. In contrast, C3 plants directly perform the Calvin Cycle in mesophyll cells, without making use of a CO 2 concentration method. Malate ...
Plant pigments usually utilize the last two of these reactions to convert the sun's energy into their own. This initial charge separation occurs in less than 10 picoseconds (10 -11 seconds). In their high-energy states, the special pigment and the acceptor could undergo charge recombination; that is, the electron on the acceptor could move back ...
The CO 2 compensation point (Γ) is the CO 2 concentration at which the rate of photosynthesis exactly matches the rate of respiration. There is a significant difference in Γ between C 3 plants and C 4 plants: on land, the typical value for Γ in a C 3 plant ranges from 40–100 μmol/mol, while in C 4 plants the values are lower at 3–10 μmol/mol. Plants with a weaker CCM, such as C2 ...
Oxygenic photosynthesis can be performed by plants and cyanobacteria; cyanobacteria are believed to be the progenitors of the photosystem-containing chloroplasts of eukaryotes. Photosynthetic bacteria that cannot produce oxygen have only one photosystem, which is similar to either PSI or PSII .
However, photosynthesis is a quantum process and the chemical reactions of photosynthesis are more dependent on the number of photons than the energy contained in the photons. Therefore, plant biologists often quantify PAR using the number of photons in the 400-700 nm range received by a surface for a specified amount of time, or the ...
Photosynthetic capacity is limited by carboxylation capacity and electron transport capacity. For example, in high carbon dioxide concentrations or in low light, the plant is not able to regenerate ribulose-1,5-bisphosphate fast enough (also known RUBP, the acceptor molecule in photosynthetic carbon reduction). So in this case, photosynthetic ...