Search results
Results from the WOW.Com Content Network
The difference between axial and radial turbines consists in the way the fluid flows through the components (compressor and turbine). Whereas for an axial turbine the rotor is 'impacted' by the fluid flow, for a radial turbine, the flow is smoothly oriented perpendicular to the rotation axis, and it drives the turbine in the same way water ...
A centrifugal pump is an example of a radial flow turbomachine. Mixed flow turbomachines – When axial and radial flow are both present and neither is negligible, the device is termed a mixed flow turbomachine. [9] It combines flow and force components of both radial and axial types. A Francis turbine is an example of a mixed-flow turbine.
An axial turbine has a similar construction as an axial compressor, but it operates in the reverse, converting flow of the fluid into rotating mechanical energy. A set of static guide vanes or nozzle vanes accelerates and adds swirl to the fluid and directs it to the next row of turbine blades mounted on a turbine rotor.
The Francis turbine is a type of water turbine. It is an inward-flow reaction turbine that combines radial and axial flow concepts. Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency. [1] The process of arriving at the modern Francis runner design took from 1848 to approximately 1920. [1]
Radial flow turbines are mechanically robust compared to axial turbines and they are easy to configure. As a result of that they were considered for the application before axial turbine. They are more tolerant of overspeed and temporary temperature extremes. Radial flow turbines have higher energy extraction capability in one single stage.
These understandings apply to all dynamic, continuous-flow, axisymmetric pumps, fans, blowers, and compressors in axial, mixed-flow and radial/centrifugal configurations. This relationship is the reason advances in turbines and axial compressors often find their way into other turbomachinery including centrifugal compressors.
Compressors are typically driven by an electric motor or a steam or a gas turbine. [1] Axial flow compressors produce a continuous flow of compressed gas, and have the benefits of high efficiency and large mass flow rate, particularly in relation to their size and cross-section. They do, however, require several rows of airfoils to achieve a ...
In the axial compressor the air flows parallel to the axis of rotation. Axial compressors are made to be multi-staged. A stage consists of a row of rotating blades called the rotor, which are connected to the central shaft and a row of stationary or fixed blades called stator. In axial flow compressor, the air flows from stage to stage.