enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. t-statistic - Wikipedia

    en.wikipedia.org/wiki/T-statistic

    Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...

  3. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  4. Student's t-test - Wikipedia

    en.wikipedia.org/wiki/Student's_t-test

    From the t-test, the difference between the group means is 6-2=4. From the regression, the slope is also 4 indicating that a 1-unit change in drug dose (from 0 to 1) gives a 4-unit change in mean word recall (from 2 to 6). The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods ...

  5. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Compute from the observations the observed value t obs of the test statistic T. Decide to either reject the null hypothesis in favor of the alternative or not reject it. The Neyman-Pearson decision rule is to reject the null hypothesis H 0 if the observed value t obs is in the critical region, and not to reject the null hypothesis otherwise. [31]

  6. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .

  7. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:

  8. Fisher's method - Wikipedia

    en.wikipedia.org/wiki/Fisher's_method

    Under Fisher's method, two small p-values P 1 and P 2 combine to form a smaller p-value.The darkest boundary defines the region where the meta-analysis p-value is below 0.05.. For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0

  9. One- and two-tailed tests - Wikipedia

    en.wikipedia.org/wiki/One-_and_two-tailed_tests

    The p-value was introduced by Karl Pearson [6] in the Pearson's chi-squared test, where he defined P (original notation) as the probability that the statistic would be at or above a given level. This is a one-tailed definition, and the chi-squared distribution is asymmetric, only assuming positive or zero values, and has only one tail, the ...