enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  3. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.

  4. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    To empirically estimate the expected value of a random variable, one repeatedly measures observations of the variable and computes the arithmetic mean of the results. If the expected value exists, this procedure estimates the true expected value in an unbiased manner and has the property of minimizing the sum of the squares of the residuals ...

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Median: the value such that the set of values less than the median, and the set greater than the median, each have probabilities no greater than one-half. Mode : for a discrete random variable, the value with highest probability; for an absolutely continuous random variable, a location at which the probability density function has a local peak.

  6. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The one-sided variant can be used to prove the proposition that for probability distributions having an expected value and a median, the mean and the median can never differ from each other by more than one standard deviation. To express this in symbols let μ, ν, and σ be respectively the mean, the median, and the standard deviation. Then

  7. Deviation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviation_(statistics)

    In mathematics and statistics, deviation serves as a measure to quantify the disparity between an observed value of a variable and another designated value, frequently the mean of that variable. Deviations with respect to the sample mean and the population mean (or " true value ") are called errors and residuals , respectively.

  8. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [8] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.

  9. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    The product is one type of algebra for random variables: Related to the product distribution are the ratio distribution, sum distribution (see List of convolutions of probability distributions) and difference distribution. More generally, one may talk of combinations of sums, differences, products and ratios.