Search results
Results from the WOW.Com Content Network
A hypertonic solution has a greater concentration of non-permeating solutes than another solution. [2] In biology, the tonicity of a solution usually refers to its solute concentration relative to that of another solution on the opposite side of a cell membrane ; a solution outside of a cell is called hypertonic if it has a greater ...
Plasmolysis is the process in which cells lose water in a hypertonic solution. The reverse process, deplasmolysis or cytolysis, can occur if the cell is in a hypotonic solution resulting in a lower external osmotic pressure and a net flow of water into the cell.
In hypertonic solutions water flows out of the cell and the cell shrinks (plasmolysis). In hypotonic solutions, water flows into the cell and the cell swells ( turgescence ). Osmotic shock or osmotic stress is physiologic dysfunction caused by a sudden change in the solute concentration around a cell , which causes a rapid change in the ...
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
The contractile vacuole is a specialized type of vacuole that regulates the quantity of water inside a cell.In freshwater environments, the concentration of solutes is hypotonic, lower outside than inside the cell.
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
Plasma osmolarity of some reptiles, especial those from a freshwater aquatic environment, may be lower than that of mammals (e.g. < 260 mOsm/L) during favourable conditions. Consequently, solutions osmotically balanced for mammals (e.g., 0.9% normal saline) are likely to be mildly hypertonic for such animals.
When the cell is in a hypertonic solution, water flows out of the cell, which decreases the cell's volume. When in a hypotonic solution, water flows into the membrane and increases the cell's volume, while in an isotonic solution, water flows in and out of the cell at an equal rate. [4]