enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The proof of the Riemann hypothesis for varieties over finite fields by Deligne (1974) is possibly the single strongest theoretical reason in favor of the Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions associated with automorphic forms satisfy a Riemann hypothesis, which includes the ...

  3. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of ⁠ 1 / 2 ⁠. A proof or disproof of this would have far-reaching implications in number theory , especially for the distribution of prime numbers .

  4. Weil conjectures - Wikipedia

    en.wikipedia.org/wiki/Weil_conjectures

    However, Grothendieck's standard conjectures remain open (except for the hard Lefschetz theorem, which was proved by Deligne by extending his work on the Weil conjectures), and the analogue of the Riemann hypothesis was proved by Deligne , using the étale cohomology theory but circumventing the use of standard conjectures by an ingenious argument.

  5. Conjecture - Wikipedia

    en.wikipedia.org/wiki/Conjecture

    In mathematics, the Riemann hypothesis, proposed by Bernhard Riemann , is a conjecture that the non-trivial zeros of the Riemann zeta function all have real part 1/2. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields .

  6. Standard conjectures on algebraic cycles - Wikipedia

    en.wikipedia.org/wiki/Standard_conjectures_on...

    Moreover, as he pointed out, the standard conjectures also imply the hardest part of the Weil conjectures, namely the "Riemann hypothesis" conjecture that remained open at the end of the 1960s and was proved later by Pierre Deligne; for details on the link between Weil and standard conjectures, see Kleiman (1968).

  7. Generalized Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Generalized_Riemann_hypothesis

    The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q, with ring of integers Z.

  8. Arithmetic zeta function - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_zeta_function

    This was proved (Emil Artin, Helmut Hasse, André Weil, Alexander Grothendieck, Pierre Deligne) in positive characteristic for all n. It is not proved for any scheme that is flat over Z. The Riemann hypothesis is a partial case of Conjecture 2.

  9. Pierre Deligne - Wikipedia

    en.wikipedia.org/wiki/Pierre_Deligne

    Deligne's contribution was to supply the estimate of the eigenvalues of the Frobenius endomorphism, considered the geometric analogue of the Riemann hypothesis. It also led to a proof of the Lefschetz hyperplane theorem and the old and new estimates of the classical exponential sums, among other applications.