Search results
Results from the WOW.Com Content Network
Step 5 in the figure is shown behind the other steps, because that step is a side-reaction that can decrease or increase the concentration of the intermediate glyceraldehyde-3-phosphate. That compound is converted to dihydroxyacetone phosphate by the enzyme triose phosphate isomerase, which is a catalytically perfect enzyme; its rate is so fast ...
Hexokinase can return the molecule to the glycolysis pathway by phosphorylating fructose to form fructose-6-phosphate. However, in uncontrolled diabetics that have high blood glucose - more than the glycolysis pathway can handle - the reactions mass balance ultimately favors the production of sorbitol. [6]
The breakdown of one molecule of glucose results in two molecules of pyruvate, which can be further oxidized to access more energy in later processes. [1] Glycolysis can be regulated at different steps of the process through feedback regulation. The step that is regulated the most is the third step.
"The metabolic pathway of glycolysis converts glucose to pyruvate via a series of intermediate metabolites. Each chemical modification (red box) is performed by a different enzyme. Steps 1 and 3 consume ATP (blue) and steps 7 and 10 produce ATP (yellow). Since steps 6-10 occur twice per glucose molecule, this leads to a net production of energy."
Glycolysis results in the breakdown of glucose, but several reactions in the glycolysis pathway are reversible and participate in the re-synthesis of glucose (gluconeogenesis). [9] Glycolysis was the first metabolic pathway discovered: As glucose enters a cell, it is immediately phosphorylated by ATP to glucose 6-phosphate in the irreversible ...
Calvin cycle step 1 (black circles represent carbon atoms) Calvin cycle steps 2 and 3 combined. The enzyme RuBisCO catalyses the carboxylation of ribulose-1,5-bisphosphate, RuBP, a 5-carbon compound, by carbon dioxide (a total of 6 carbons) in a two-step reaction. [6] The product of the first step is enediol-enzyme complex that can capture CO 2 ...
This amplifies the effect of activating glycogen phosphorylase. This inhibition is achieved by a similar mechanism, as protein kinase A acts to phosphorylate the enzyme, which lowers activity. This is known as co-ordinate reciprocal control. Refer to glycolysis for further information of the regulation of glycogenesis.
Like glycolysis, the pentose phosphate pathway appears to have a very ancient evolutionary origin. The reactions of this pathway are mostly enzyme catalyzed in modern cells, however, they also occur non-enzymatically under conditions that replicate those of the Archean ocean, and are catalyzed by metal ions, particularly ferrous ions (Fe(II)). [5]