Search results
Results from the WOW.Com Content Network
In the secondary, or steady-state, creep, dislocation structure and grain size have reached equilibrium, and therefore strain rate is constant. Equations that yield a strain rate refer to the steady-state strain rate. Stress dependence of this rate depends on the creep mechanism. In tertiary creep, the strain rate exponentially increases with ...
F.R. Larson and J. Miller proposed that creep rate could adequately be described by the Arrhenius type equation: = / Where r is the creep process rate, A is a constant, R is the universal gas constant, T is the absolute temperature, and is the activation energy for the creep process.
When subjected to a step constant stress, viscoelastic materials experience a time-dependent increase in strain. This phenomenon is known as viscoelastic creep. At time , a viscoelastic material is loaded with a constant stress that is maintained for a sufficiently long time period. The material responds to the stress with a strain that ...
L. M. Kachanov [5] and Y. N. Rabotnov [6] suggested the following evolution equations for the creep strain ε and a lumped damage state variable ω: ˙ = ˙ ˙ = ˙ where ˙ is the creep strain rate, ˙ is the creep-rate multiplier, is the applied stress, is the creep stress exponent of the material of interest, ˙ is the rate of damage accumulation, ˙ is the damage-rate multiplier, and is ...
It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured. The strain is the ratio of two lengths, so it is a dimensionless quantity (a number that does not depend on the choice of measurement units).
Creep is dependent on time so the curve that the machine generates is a time vs. strain graph. The slope of a creep curve is the creep rate dε/dt [citation needed] The trend of the curve is an upward slope. The graphs are important to learn the trends of the alloys or materials used and by the production of the creep-time graph, it is easier ...
The Voigt model predicts creep more realistically than the Maxwell model, because in the infinite time limit the strain approaches a constant: =, while a Maxwell model predicts a linear relationship between strain and time, which is most often not the case.
The classical creep curve represents the evolution of strain as a function of time in a material subjected to uniaxial stress at a constant temperature. The creep test, for instance, is performed by applying a constant force/stress and analyzing the strain response of the system.