Search results
Results from the WOW.Com Content Network
However, even for a nonconvex QCQP problem a local solution can generally be found with a nonconvex variant of the interior point method. In some cases (such as when solving nonlinear programming problems with a sequential QCQP approach) these local solutions are sufficiently good to be accepted.
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.
An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...
However, the method was first proposed as a computational technique much later by R. Mathon and R. L. Johnston in the late 1970s, [2] followed by a number of papers by Mathon, Johnston and Graeme Fairweather with applications. The MFS then gradually became a useful tool for the solution of a large variety of physical and engineering problems.
SQP methods solve a sequence of optimization subproblems, each of which optimizes a quadratic model of the objective subject to a linearization of the constraints. If the problem is unconstrained, then the method reduces to Newton's method for finding a point where the gradient of the objective vanishes.
The builder pattern is a design pattern that provides a flexible solution to various object creation problems in object-oriented programming.The builder pattern separates the construction of a complex object from its representation.
Can you vary or change your problem to create a new problem (or set of problems) whose solution(s) will help you solve your original problem? Search: Auxiliary Problem: Can you find a subproblem or side problem whose solution will help you solve your problem? Subgoal: Here is a problem related to yours and solved before: Can you find a problem ...
A sufficient condition for existence and uniqueness of a solution to this problem is that M be symmetric positive-definite. If M is such that LCP(q, M) has a solution for every q, then M is a Q-matrix. If M is such that LCP(q, M) have a unique solution for every q, then M is a P-matrix. Both of these characterizations are sufficient and ...