enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    However, even for a nonconvex QCQP problem a local solution can generally be found with a nonconvex variant of the interior point method. In some cases (such as when solving nonlinear programming problems with a sequential QCQP approach) these local solutions are sufficiently good to be accepted.

  3. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO works on all platforms and with Python 2.7 and 3+. By default, the problem is sent to a public server where the solution is computed and returned to Python. There are Windows, MacOS, Linux, and ARM (Raspberry Pi) processor options to solve without an Internet connection.

  4. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  5. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  6. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    SQP methods solve a sequence of optimization subproblems, each of which optimizes a quadratic model of the objective subject to a linearization of the constraints. If the problem is unconstrained, then the method reduces to Newton's method for finding a point where the gradient of the objective vanishes.

  7. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    After the problem on variables +, …, is solved, its optimal cost can be used as an upper bound while solving the other problems, In particular, the cost estimate of a solution having x i + 1 , … , x n {\displaystyle x_{i+1},\ldots ,x_{n}} as unassigned variables is added to the cost that derives from the evaluated variables.

  8. Direct multiple shooting method - Wikipedia

    en.wikipedia.org/.../Direct_multiple_shooting_method

    Thus, solutions of the boundary value problem correspond to solutions of the following system of N equations: (;,) = (;,) = (;,) =. The central N−2 equations are the matching conditions, and the first and last equations are the conditions y(t a) = y a and y(t b) = y b from the boundary value problem. The multiple shooting method solves the ...

  9. Design optimization - Wikipedia

    en.wikipedia.org/wiki/Design_optimization

    When the objective function f is a vector rather than a scalar, the problem becomes a multi-objective optimization one. If the design optimization problem has more than one mathematical solutions the methods of global optimization are used to identified the global optimum. Optimization Checklist [2] Problem Identification; Initial Problem Statement