Search results
Results from the WOW.Com Content Network
Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules. Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to y = Mx. Each element of a point group is either a rotation (determinant of M = 1), or it is a reflection or improper ...
Every point group in a Laue class has exactly the same abstract group structure except the centred group in the rightmost column which is the direct product of the rotational group with inversion. It follows that all groups in a Laue class have the same order except the centred group which is twice that of the others.
These groups are characterized by an n-fold improper rotation axis S n, where n is necessarily even. The S 2 group is the same as the C i group in the nonaxial groups section. S n groups with an odd value of n are identical to C nh groups of same n and are therefore not considered here (in particular, S 1 is identical to C s).
Such species belong to the point group D 3h. Molecules where the three ligands are not identical, such as H 2 CO, deviate from this idealized geometry. Examples of molecules with trigonal planar geometry include boron trifluoride (BF 3), formaldehyde (H 2 CO), phosgene (COCl 2), and sulfur trioxide (SO 3).
The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Example for point group 4/mmm (): hemisymmorphic space groups contain the axial combination 422, but at least one mirror plane m will be substituted with glide plane, for example P4/mcc (, 35h), P4/nbm (, 36h), P4/nnc ...
The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule, the notation is often sufficient and commonly used for spectroscopy.
In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.
Structure of iodine heptafluoride, an example of a molecule with the pentagonal-bipyramidal coordination geometry. In chemistry, a pentagonal bipyramid is a molecular geometry with one atom at the centre with seven ligands at the corners of a pentagonal bipyramid. A perfect pentagonal bipyramid belongs to the molecular point group D 5h.