enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    Although all decimal fractions are fractions, and thus it is possible to use a rational data type to represent it exactly, it may be more convenient in many situations to consider only non-repeating decimal fractions (fractions whose denominator is a power of ten). For example, fractional units of currency worldwide are mostly based on a ...

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    If a non-repeating set of decimals precede the pattern (such as 0.1523 987), one may write the number as the sum of the non-repeating and repeating parts, respectively: 0.1523 + 0.0000 987. Then, convert both parts to fractions, and add them using the methods described above: 1523 / 10000 + 987 / 9990000 = 1522464 / 9990000

  4. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  5. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Fractions: A representation of a non-integer as a ratio of two integers. These include improper fractions as well as mixed numbers . Continued fraction : An expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of ...

  6. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases. Thus, for example in base 2, π = 3.1415926... 10 can be written as the aperiodic 11.001001000011111... 2. Putting overscores, n, or dots, ṅ, above the common digits is a convention used to represent repeating rational expansions. Thus:

  7. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  8. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Decimal fractions like 0.3 and 25.12 are a special type of rational numbers since their denominator is a power of 10. For instance, 0.3 is equal to , and 25.12 is equal to . [20] Every rational number corresponds to a finite or a repeating decimal. [21] [c]

  9. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    This is the repeating decimal notation (to which there does not exist a single universally accepted notation or phrasing). For base 10 it is called a repeating decimal or recurring decimal. An irrational number has an infinite non-repeating representation in all integer bases.