enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS is open-source software to solve linear programming (LP), mixed-integer programming (MIP), and convex quadratic programming (QP) models. [1] Written in C++ and published under an MIT license, HiGHS provides programming interfaces to C, Python, Julia, Rust, JavaScript, Fortran, and C#. It has no external dependencies.

  3. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    A solver for large scale optimization with API for several languages (C++, java, .net, Matlab and python) TOMLAB: Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB. TOMLAB supports solvers like CPLEX, SNOPT and KNITRO. Wolfram Mathematica

  4. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    Unlike Tikhonov regularization, this scheme does not have a convenient closed-form solution: instead, the solution is typically found using quadratic programming or more general convex optimization methods, as well as by specific algorithms such as the least-angle regression algorithm.

  5. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function. The rational function model is a generalization of the polynomial model: rational function models contain polynomial models as a subset (i.e., the case when the denominator is a constant).

  6. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    SciPy (de facto standard for scientific Python) has scipy.optimize solver, which includes several nonlinear programming algorithms (zero-order, first order and second order ones). IPOPT (C++ implementation, with numerous interfaces including C, Fortran, Java, AMPL, R, Python, etc.) is an interior point method solver (zero-order, and optionally ...

  7. Moving least squares - Wikipedia

    en.wikipedia.org/wiki/Moving_least_squares

    Moving least squares is a method of reconstructing continuous functions from a set of unorganized point samples via the calculation of a weighted least squares measure biased towards the region around the point at which the reconstructed value is requested.

  8. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    The quadratic programming problem with n variables and m constraints can be formulated as follows. [2] Given: a real-valued, n-dimensional vector c, an n×n-dimensional real symmetric matrix Q, an m×n-dimensional real matrix A, and; an m-dimensional real vector b, the objective of quadratic programming is to find an n-dimensional vector x ...

  9. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]