Search results
Results from the WOW.Com Content Network
Allylic strain in an olefin. Allylic strain (also known as A 1,3 strain, 1,3-allylic strain, or A-strain) in organic chemistry is a type of strain energy resulting from the interaction between a substituent on one end of an olefin (a synonym for an alkene) with an allylic substituent on the other end. [1]
1,3 Diaxial interactions occur when the non-hydrogen substituent on a cyclohexane occupies the axial position. This axial substituent is in the eclipsed position with the axial substituents on the 3-carbons relative to itself (there will be two such carbons and thus two 1,3 diaxial interactions).
The interaction is labeled by the carbon number they come from. A 1,3-diaxial interaction happens between the atoms connected to the first and third carbons. The more interactions the more strain on the molecule and the conformations with the most strain are less likely to be seen.
1,3-diaxial strain is another form of strain similar to syn-pentane. In this case, the strain occurs due to steric interactions between a substituent of a cyclohexane ring ('α') and gauche interactions between the alpha substituent and both methylene carbons two bonds away from the substituent in question (hence, 1,3-diaxial interactions).
The chair conformation of six-membered rings have a dihedral angle of 60° between adjacent substituents thus usually making it the most stable conformer. Since there are two possible chair conformation steric and stereoelectronic effects such as the anomeric effect, 1,3-diaxial interactions, dipoles and intramolecular hydrogen bonding must be taken into consideration when looking at relative ...
This means it costs 1.74 kcal/mol (7.3 kJ/mol) of energy to have a methyl group in the axial position compared to the equatorial position. A-values are numerical values used in the determination of the most stable orientation of atoms in a molecule ( conformational analysis ), as well as a general representation of steric bulk .
In alkanes, optimum overlap of atomic orbitals is achieved at 109.5°. The most common cyclic compounds have five or six carbons in their ring. [6] Adolf von Baeyer received a Nobel Prize in 1905 for the discovery of the Baeyer strain theory, which was an explanation of the relative stabilities of cyclic molecules in 1885.
The α- and β-anomers of D-glucopyranose.. In organic chemistry, the anomeric effect or Edward-Lemieux effect (after J. T. Edward and Raymond Lemieux) is a stereoelectronic effect that describes the tendency of heteroatomic substituents adjacent to a heteroatom within a cyclohexane ring to prefer the axial orientation instead of the less-hindered equatorial orientation that would be expected ...