Search results
Results from the WOW.Com Content Network
The key reaction is the reduction of oxygen: O 2 + 4 e − + 2 H 2 O → 4 OH −. Because it forms hydroxide ions, this process is strongly affected by the presence of acid. Likewise, the corrosion of most metals by oxygen is accelerated at low pH. Providing the electrons for the above reaction is the oxidation of iron that may be described as ...
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion. [1] [2]
High temperature oxidation is generally occurs via the following chemical reaction between oxygen (O 2) and a metal M: [2]. nM + 1/2kO 2 = M n O k. According to Wagner's theory of oxidation, oxidation rate is controlled by partial ionic and electronic conductivities of oxides and their dependence on the chemical potential of the metal or oxygen in the oxide.
Using the same metal for all construction is the easiest way of matching potentials. Electroplating or other plating can also help. This tends to use more noble metals that resist corrosion better. Chrome, nickel, silver and gold can all be used. Galvanizing with zinc protects the steel base metal by sacrificial anodic action.
High-temperature corrosion is a mechanism of corrosion that takes place when gas turbines, diesel engines, furnaces or other machinery come in contact with hot gas containing certain contaminants. Fuel sometimes contains vanadium compounds or sulfates, which can form low melting point compounds during combustion.
Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic (oxidation reaction) while an unknown but potentially vast area becomes cathodic (reduction reaction), leading to ...
Tarnish is a thin layer of corrosion that forms over copper, brass, aluminum, magnesium, neodymium and other similar metals as their outermost layer undergoes a chemical reaction. [1] Tarnish does not always result from the sole effects of oxygen in the air.
Under anoxic conditions, the mechanism for corrosion requires a substitute for oxygen as the oxidizing agent in the redox reaction. [1] For abiotic anaerobic corrosion, that substitute is the hydrogen ion produced in the dissociation of water and the proceeding reduction of the hydrogen ions into diatomic hydrogen gas. [1]