Search results
Results from the WOW.Com Content Network
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Toggle the table of contents. ... The following compounds are liquid at room temperature and are completely miscible with water; ... C 6 H 14 O 4: triethylene glycol ...
Positive solvatochromism corresponds to a bathochromic shift (or red shift) with increasing solvent polarity. An example of positive solvatochromism is provided by 4,4'-bis(dimethylamino)fuchsone, which is orange in toluene, red in acetone. The main value of the concept of solvatochromism is the context it provides to predict colors of solutions.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The evaporated mobile phase of LC acts as the ionization gas and reactant ions. If water is the only solvent in the evaporated mobile phase, the excited nitrogen molecular ions N 4 +* would react with H 2 O molecules to produce water cluster ions H + (H 2 O) n. [10] Then, analyte molecules M are protonated by the water cluster ions.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise.
Brooker's merocyanine (1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine, MOED) [1] is an organic dye belonging to the class of merocyanines. MOED is notable for its solvatochromic properties, meaning it changes color depending on the solvent in which it is dissolved.