Search results
Results from the WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) ... Ethanol: 0.78 78.4 1.22 –114.6 –1.99 ... Water: 100.00 0.512 0.00
At atmospheric pressure, mixtures of ethanol and water form an azeotrope at about 89.4 mol% ethanol (95.6% ethanol by mass, [84] 97% alcohol by volume), with a boiling point of 351.3 K (78.1 °C). [85] At lower pressure, the composition of the ethanol-water azeotrope shifts to more ethanol-rich mixtures. [86]
Phase behavior Triple point: 150 K (−123 °C), 0.00043 Pa Critical point: 514 K (241 °C), 63 bar Std enthalpy change of fusion, Δ fus H o +4.9 kJ/mol
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. 1-Butanol, with a four-carbon chain, is moderately soluble. Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers.
Water boiling at 99.3 °C (210.8 °F) at 215 m (705 ft) elevation. The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor.
Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, Trouton's rule states that the (molar) entropy of vaporization is almost the same value, about 85–88 J/(K·mol), for various kinds of liquids at their boiling points. [1]
The boiling point elevation happens both when the solute is an electrolyte, such as various salts, and a nonelectrolyte. In thermodynamic terms, the origin of the boiling point elevation is entropic and can be explained in terms of the vapor pressure or chemical potential of the solvent. In both cases, the explanation depends on the fact that ...