Search results
Results from the WOW.Com Content Network
Especially in order theory one finds numerous important variants of distributivity, some of which include infinitary operations, such as the infinite distributive law; others being defined in the presence of only one binary operation, such as the according definitions and their relations are given in the article distributivity (order theory).
Distributivity is a basic concept that is treated in any textbook on lattice and order theory. See the literature given for the articles on order theory and lattice theory. More specific literature includes: G. N. Raney, Completely distributive complete lattices, Proceedings of the American Mathematical Society, 3: 677 - 680, 1952.
The principle of distributivity is valid in classical logic, but both valid and invalid in quantum logic. The article "Is Logic Empirical?" discusses the case that quantum logic is the correct, empirical logic, on the grounds that the principle of distributivity is inconsistent with a reasonable interpretation of quantum phenomena. [1]
Order theory is a branch of mathematics that studies various kinds of objects (often binary relations) that capture the intuitive notion of ordering, providing a framework for saying when one thing is "less than" or "precedes" another. An alphabetical list of many notions of order theory can be found in the order theory glossary.
This is a general situation in order theory: A given order can be inverted by just exchanging its direction, pictorially flipping the Hasse diagram top-down. This yields the so-called dual, inverse, or opposite order. Every order theoretic definition has its dual: it is the notion one obtains by applying the definition to the inverse order.
The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854.
Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of many-valued logic and intuitionistic logic. The same is true about distributivity of conjunction over disjunction and disjunction over conjunction, as well as for the absorption law.
The most notable difference between quantum logic and classical logic is the failure of the propositional distributive law: [1]. p and (q or r) = (p and q) or (p and r),. where the symbols p, q and r are propositional variables.