Search results
Results from the WOW.Com Content Network
The ITU-T G.hn standard also uses CRC-32C to detect errors in the payload (although it uses CRC-16-CCITT for PHY headers). CRC-32C computation is implemented in hardware as an operation ( CRC32 ) of SSE4.2 instruction set, first introduced in Intel processors' Nehalem microarchitecture.
These inversions are extremely common but not universally performed, even in the case of the CRC-32 or CRC-16-CCITT polynomials. They are almost always included when sending variable-length messages, but often omitted when communicating fixed-length messages, as the problem of added zero bits is less likely to arise.
little_endian_table[0] := 0 crc := 1; i := 128 do { if crc and 1 { crc := (crc rightShift 1) xor 0x8408 // The CRC polynomial} else { crc := crc rightShift 1 } // crc is the value of little_endian_table[i]; let j iterate over the already-initialized entries for j from 0 to 255 by 2 × i { little_endian_table[i + j] := crc xor little_endian ...
By far the most popular FCS algorithm is a cyclic redundancy check (CRC), used in Ethernet and other IEEE 802 protocols with 32 bits, in X.25 with 16 or 32 bits, in HDLC with 16 or 32 bits, in Frame Relay with 16 bits, [3] in Point-to-Point Protocol (PPP) with 16 or 32 bits, and in other data link layer protocols.
A CRC has properties that make it well suited for detecting burst errors. CRCs are particularly easy to implement in hardware and are therefore commonly used in computer networks and storage devices such as hard disk drives. The parity bit can be seen as a special-case 1-bit CRC.
This work has been released into the public domain by its author, Lindosland at English Wikipedia.This applies worldwide. In some countries this may not be legally possible; if so:
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
When the data word is divided into 16-bit blocks, two 16-bit sums result and are combined into a 32-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 16 and added to the simple checksum, effectively stacking the sums side-by-side in a 32-bit word with the simple checksum at the least significant end. This algorithm is then ...