Search results
Results from the WOW.Com Content Network
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.
It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron. Many polyhedra are constructed from the regular icosahedron. For example, most of the Kepler–Poinsot polyhedron is constructed by faceting. Some of the Johnson solids can be constructed by removing the pentagonal ...
Convex regular icosahedron A tensegrity icosahedron. In geometry, an icosahedron (/ ˌ aɪ k ɒ s ə ˈ h iː d r ən,-k ə-,-k oʊ-/ or / aɪ ˌ k ɒ s ə ˈ h iː d r ən / [1]) is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'.
An example can be found in the model of a buckminsterfullerene, a truncated icosahedron-shaped geodesic dome allotrope of elemental carbon discovered in 1985. [17] In other engineering and science applications, its shape was also the configuration of the lenses used for focusing the explosive shock waves of the detonators in both the gadget and ...
In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex regular polyhedra), with Schläfli symbol {3, 5 ⁄ 2} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.
It can be seen as the compound of an icosahedron and dodecahedron. It is one of four compounds constructed from a Platonic solid or Kepler-Poinsot solid, and its dual. It has icosahedral symmetry (I h) and the same vertex arrangement as a rhombic triacontahedron.
This polyhedron is the truncation of the great icosahedron: . The truncated great stellated dodecahedron is a degenerate polyhedron, with 20 triangular faces from the truncated vertices, and 12 (hidden) pentagonal faces as truncations of the original pentagram faces, the latter forming a great dodecahedron inscribed within and sharing the edges of the icosahedron.
If you expand an icosidodecahedron by moving the faces away from the origin the right amount, without changing the orientation or size of the faces, and patch the square holes in the result, you get a rhombicosidodecahedron.