enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonstandard calculus - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_calculus

    This is the main reason why it is hard to understand the rigorous definitions of limit, convergence, continuity and differentiability in analysis as they have many quantifiers. In fact, it is the alternation of the ∀ {\displaystyle \forall } and ∃ {\displaystyle \exists } that causes the complexity.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Continuity and differentiability This function does not have a derivative at the marked point, as the function is not continuous there (specifically, it has a jump discontinuity ). The absolute value function is continuous but fails to be differentiable at x = 0 since the tangent slopes do not approach the same value from the left as they do ...

  4. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. . Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function

  5. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    This notion of continuity is the same as topological continuity when the partially ordered sets are given the Scott topology. [ 19 ] [ 20 ] In category theory , a functor F : C → D {\displaystyle F:{\mathcal {C}}\to {\mathcal {D}}} between two categories is called continuous if it commutes with small limits .

  6. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

  7. List of continuity-related mathematical topics - Wikipedia

    en.wikipedia.org/wiki/List_of_continuity-related...

    Continuous function; Absolutely continuous function; Absolute continuity of a measure with respect to another measure; Continuous probability distribution: Sometimes this term is used to mean a probability distribution whose cumulative distribution function (c.d.f.) is (simply) continuous.

  8. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    In calculus, the differential represents a change in the linearization of a function.. The total differential is its generalization for functions of multiple variables.; In traditional approaches to calculus, differentials (e.g. dx, dy, dt, etc.) are interpreted as infinitesimals.

  9. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    [6] [7] That D is strictly less than 2 follows from the conditions on and from above. Only after more than 30 years was this proved rigorously. [8] The term Weierstrass function is often used in real analysis to refer to any function with similar properties and construction to Weierstrass's original example.