enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Restriction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Restriction_(mathematics)

    For a function to have an inverse, it must be one-to-one.If a function is not one-to-one, it may be possible to define a partial inverse of by restricting the domain. For example, the function = defined on the whole of is not one-to-one since = for any .

  3. Blumberg theorem - Wikipedia

    en.wikipedia.org/wiki/Blumberg_theorem

    Similarly, every additive function that is not linear (that is, not of the form for some constant ) is a nowhere continuous function whose restriction to is continuous (such functions are the non-trivial solutions to Cauchy's functional equation). This raises the question: can such a dense subset always be found?

  4. Corestriction - Wikipedia

    en.wikipedia.org/wiki/Corestriction

    In mathematics, a corestriction [1] of a function is a notion analogous to the notion of a restriction of a function. The duality prefix co- here denotes that while the restriction changes the domain to a subset, the corestriction changes the codomain to a subset. However, the notions are not categorically dual.

  5. Lusin's theorem - Wikipedia

    en.wikipedia.org/wiki/Lusin's_theorem

    The strength of Lusin's theorem might not be readily apparent, as can be demonstrated by example. Consider Dirichlet function , that is the indicator function 1 Q : [ 0 , 1 ] → { 0 , 1 } {\displaystyle 1_{\mathbb {Q} }:[0,1]\to \{0,1\}} on the unit interval [ 0 , 1 ] {\displaystyle [0,1]} taking the value of one on the rationals, and zero ...

  6. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input which may or may not be in the domain of the function. Formal definitions, first devised in the early 19th century, are given below. Informally, a function f assigns an output f(x) to every ...

  7. Weil restriction - Wikipedia

    en.wikipedia.org/wiki/Weil_restriction

    In mathematics, restriction of scalars (also known as "Weil restriction") is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another variety Res L/k X, defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over ...

  8. Function restriction - Wikipedia

    en.wikipedia.org/?title=Function_restriction&...

    What links here; Related changes; Upload file; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code

  9. Distribution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(mathematics)

    Examples of the latter include the Dirac delta function and distributions defined to act by integration of test functions against certain measures on . Nonetheless, it is still always possible to reduce any arbitrary distribution down to a simpler family of related distributions that do arise via such actions of integration.