enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + ⁠ 96 / 2 ⁠ − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.

  3. Wallace–Bolyai–Gerwien theorem - Wikipedia

    en.wikipedia.org/wiki/Wallace–Bolyai–Gerwien...

    In geometry, the Wallace–Bolyai–Gerwien theorem, [1] named after William Wallace, Farkas Bolyai and P. Gerwien, is a theorem related to dissections of polygons. It answers the question when one polygon can be formed from another by cutting it into a finite number of pieces and recomposing these by translations and rotations.

  4. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...

  5. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The quotients formed by the area of these polygons divided by the square of the circle radius can be made arbitrarily close to π as the number of polygon sides becomes large, proving that the area inside the circle of radius r is πr 2, π being defined as the ratio of the circumference to the diameter (C/d).

  6. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    The area of a self-intersecting polygon can be defined in two different ways, giving different answers: Using the formulas for simple polygons, we allow that particular regions within the polygon may have their area multiplied by a factor which we call the density of the region. For example, the central convex pentagon in the center of a ...

  7. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    Liu Hui proved an inequality involving π by considering the area of inscribed polygons with N and 2 N sides. In the diagram, the yellow area represents the area of an N-gon, denoted by , and the yellow area plus the green area represents the area of a 2 N-gon, denoted by . Therefore, the green area represents the difference between the areas ...

  8. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.

  9. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]