Search results
Results from the WOW.Com Content Network
Marine energy, also known as ocean energy, ocean power, or marine and hydrokinetic energy, refers to energy harnessed from waves, tides, salinity gradients, and temperature differences in the ocean. The movement of water in the world's oceans stores vast amounts of kinetic energy , which can be converted into electricity to power homes ...
The world's first marine energy test facility was established in 2003 to start the development of the wave and tidal energy industry in the UK. Based in Orkney, Scotland, the European Marine Energy Centre (EMEC) has supported the deployment of more wave and tidal energy devices than at any other single site in the world. EMEC provides a variety ...
Marine currents can carry large amounts of water, largely driven by the tides, which are a consequence of the gravitational effects of the planetary motion of the Earth, the Moon and the Sun. Augmented flow velocities can be found where the underwater topography in straits between islands and the mainland or in shallows around headlands plays a major role in enhancing the flow velocities ...
The world's first wave energy test facility was established in Orkney, Scotland in 2003 to kick-start the development of a wave and tidal energy industry. The European Marine Energy Centre(EMEC) has supported the deployment of more wave and tidal energy devices than any other single site. [15]
Beneficial factors that should be taken into account include OTEC's lack of waste products and fuel consumption, the area in which it is available [citation needed] (often within 20° of the equator), [61] the geopolitical effects of petroleum dependence, compatibility with alternate forms of ocean power such as wave energy, tidal energy and ...
Figure 2. Eigenvalue ε of wave modes of zonal wave number s = 1 vs. normalized frequency ν = ω/Ω where Ω = 7.27 × 10 −5 s −1 is the angular frequency of one solar day. Waves with positive (negative) frequencies propagate to the east (west). The horizontal dashed line is at ε c ≃ 11 and indicates the transition from internal to ...
The internal tidal energy in one tidal period going through an area perpendicular to the direction of propagation is called the energy flux and is measured in Watts/m. The energy flux at one point can be summed over depth- this is the depth-integrated energy flux and is measured in Watts/m.
Away from resonance this can reduce tidal energy moving onto the shelf. However near a resonant frequency the phase relationship, between the waves on the shelf and in the deep ocean, can have the effect of drawing energy onto the shelf. The increased speed of long waves in the deep ocean means that the tidal wavelength there is of order 10,000 km.