Search results
Results from the WOW.Com Content Network
In electrical engineering and control theory, a Bode plot (/ ˈ b oʊ d i / BOH-dee) is a graph of the frequency response of a system. It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift.
Hendrik Wade Bode (/ ˈ b oʊ d i / BOH-dee, Dutch:; [1] December 24, 1905 – June 21, 1982) [1] was an American engineer, researcher, inventor, author and scientist, of Dutch ancestry. As a pioneer of modern control theory and electronic telecommunications he revolutionized both the content and methodology of his chosen fields of research.
Only a limited number of systems are available upon which Bode's law can presently be tested; two solar planets have enough large moons that probably formed in a process similar to that which formed the planets: The four large satellites of Jupiter and the biggest inner satellite (i.e., Amalthea) cling to a regular, but non-Titius-Bode, spacing ...
A sphere is the only stable shape for a non-rotating, gravitationally self-attracting liquid. The outward acceleration caused by Earth's rotation is greater at the equator than at the poles (where is it zero), so the sphere gets deformed into an ellipsoid, which represents the shape having the lowest potential energy for a rotating, fluid body ...
A Nyquist plot is a parametric plot of a frequency response used in automatic control and signal processing. The most common use of Nyquist plots is for assessing the stability of a system with feedback. In Cartesian coordinates, the real part of the transfer function is plotted on the X-axis while the imaginary part is plotted on the Y-axis ...
This video shows what will happen when Earth's magnetic poles flip. Note: The following is a transcript: Did you know that Earth has two North Poles? There’s the geographic North Pole, which ...
As I understand the bode plot, is the transfer function as it is on the imaginary axis (s=jw). The question then is, why are poles or zeros on the real axis of the transfer function create corners and phase changes on the imaginary axis, at the same value of frequency as the pole or zero?
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!