Search results
Results from the WOW.Com Content Network
The conversion is made in two steps using binary as an intermediate base. Octal is converted to binary and then binary to hexadecimal, grouping digits by fours, which correspond each to a hexadecimal digit. For instance, convert octal 1057 to hexadecimal: To binary:
Each of these number systems is a positional system, but while decimal weights are powers of 10, the octal weights are powers of 8 and the hexadecimal weights are powers of 16. To convert from hexadecimal or octal to decimal, for each digit one multiplies the value of the digit by the value of its position and then adds the results. For example:
Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power of two (namely, 2 3, so it takes exactly three binary digits to represent an octal digit). The correspondence between octal and binary numerals is the same as for the first eight digits of hexadecimal in the table above. Binary 000 is ...
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
Such conversion is available for both advanced calculators and programming languages. For example, the hexadecimal representation of the 24 bits above is 4D616E. The octal representation is 23260556. Those 8 octal digits can be split into pairs (23 26 05 56), and each pair is converted to decimal to yield 19 22 05 46.
Octets can be represented using number systems of varying bases such as the hexadecimal, decimal, or octal number systems. The binary value of all eight bits set (or activated) is 11111111 2, equal to the hexadecimal value FF 16, the decimal value 255 10, and the octal value 377 8. One octet can be used to represent decimal values ranging from ...
When converting from binary to octal every 3 bits relate to one and only one octal digit. Hexadecimal, decimal, octal, and a wide variety of other bases have been used for binary-to-text encoding, implementations of arbitrary-precision arithmetic, and other applications. For a list of bases and their applications, see list of numeral systems.
The octal and hexadecimal systems are often used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, since sixteen is the fourth power of two; for example, hexadecimal 78 16 is binary 111 1000 2. Similarly, every octal digit corresponds to a unique sequence of ...