Search results
Results from the WOW.Com Content Network
According to the theory of cosmic inflation, the very early universe underwent a period of very rapid, quasi-exponential expansion.While the time-scale for this period of expansion was far shorter than that of the existing expansion, this was a period of accelerated expansion with some similarities to the current epoch.
The expansion of the universe can be understood as a consequence of an initial impulse (possibly due to inflation), which sent the contents of the universe flying apart. The mutual gravitational attraction of the matter and radiation within the universe gradually slows this expansion over time, but expansion nevertheless continues due to ...
The rapid expansion immediately after the Big Bounce explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic. As the density of the Universe decreases, the effects of torsion weaken and the Universe smoothly enters the radiation-dominated era.
"The discrepancy between the observed expansion rate of the universe and the predictions of the standard model suggests that our understanding of the universe may be incomplete.
In physical cosmology, the inflationary epoch was the period in the evolution of the early universe when, according to inflation theory, the universe underwent an extremely rapid exponential expansion. This rapid expansion increased the linear dimensions of the early universe by a factor of at least 10 26 (and possibly a much larger factor ...
The rapid expansion of space meant that elementary particles remaining from the grand unification epoch were now distributed very thinly across the universe. However, the huge potential energy of the inflaton field was released at the end of the inflationary epoch, as the inflaton field decayed into other particles, known as "reheating".
Infinite expansion does not constrain the overall spatial curvature of the universe.It can be open (with negative spatial curvature), flat, or closed (positive spatial curvature), although if it is closed, sufficient dark energy must be present to counteract the gravitational forces or else the universe will end in a Big Crunch.
The inflaton field is a hypothetical scalar field which is conjectured to have driven cosmic inflation in the very early universe. [1] [2] [3] The field, originally postulated by Alan Guth, [1] provides a mechanism by which a period of rapid expansion from 10 −35 to 10 −34 seconds after the initial expansion can be generated, forming a universe not inconsistent with observed spatial ...