Search results
Results from the WOW.Com Content Network
However, mobility is much more commonly expressed in cm 2 /(V⋅s) = 10 −4 m 2 /(V⋅s). Mobility is usually a strong function of material impurities and temperature, and is determined empirically. Mobility values are typically presented in table or chart form. Mobility is also different for electrons and holes in a given material.
The carrier density is important for semiconductors, where it is an important quantity for the process of chemical doping.Using band theory, the electron density, is number of electrons per unit volume in the conduction band.
The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.
The electron mobility of HgCdTe with a large Hg content is very high. Among common semiconductors used for infrared detection, only InSb and InAs surpass electron mobility of HgCdTe at room temperature. At 80 K, the electron mobility of Hg 0.8 Cd 0.2 Te can be several hundred thousand cm 2 /(V·s).
Drift current is the electric current caused by particles getting pulled by an electric field. The term is most commonly used in the context of electrons and holes in semiconductors, although the same concept also applies to metals, electrolytes, and so on.
Mobilities of 2DHG systems are smaller than those of most 2DEG systems, in part due to larger effective masses of holes (few 1000 cm 2 /(V·s) can already be considered high mobility [8]). Aside from being in practically every semiconductor device in use today, two dimensional systems allow access to interesting physics.
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
In a semiconductor with a single carrier type, the magnetoresistance is proportional to (1 + (μB) 2), where μ is the semiconductor mobility (units m 2 ·V −1 ·s −1, equivalently m 2 ·Wb −1, or T −1) and B is the magnetic field (units teslas).