Search results
Results from the WOW.Com Content Network
A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Newton's method is one of many known methods of computing square roots. Given a positive number a, the problem of finding a number x such that x 2 = a is equivalent to finding a root of the function f(x) = x 2 − a. The Newton iteration defined by this function is given by
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The left cosets of any subgroup form a partition of ; that is, the union of all left cosets is equal to and two left cosets are either equal or have an empty intersection. [35] The first case g 1 H = g 2 H {\displaystyle g_{1}H=g_{2}H} happens precisely when g 1 − 1 ⋅ g 2 ∈ H {\displaystyle g_{1}^{-1}\cdot g_{2}\in H} , i.e ...
A matrix B is said to be a square root of A if the matrix product BB is equal to A. [1] Some authors use the name square root or the notation A 1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = B T B = A (for real-valued matrices, where B T is the ...
Theorem — The number of strictly positive roots (counting multiplicity) of is equal to the number of sign changes in the coefficients of , minus a nonnegative even number. If b 0 > 0 {\displaystyle b_{0}>0} , then we can divide the polynomial by x b 0 {\displaystyle x^{b_{0}}} , which would not change its number of strictly positive roots.
In other words, the n th digit of this number is 1 only if n is one of 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the Liouville numbers ...