Search results
Results from the WOW.Com Content Network
For example, the synodic period of the Moon's orbit as seen from Earth, relative to the Sun, is 29.5 mean solar days, since the Moon's phase and position relative to the Sun and Earth repeats after this period. This is longer than the sidereal period of its orbit around Earth, which is 27.3 mean solar days, owing to the motion of Earth around ...
Rotation period days: 25.38 Orbital period about Galactic Center [4] million years 225–250 Mean orbital speed [4] km/s: ≈ 220 Axial tilt to the ecliptic: deg. 7.25 Axial tilt to the galactic plane: deg. 67.23 Mean surface temperature: K: 5,778 Mean coronal temperature [5] K: 1–2 × 10 6: Photospheric composition H, He, O, C, Fe, S
The region between 40 and 42 AU is an example. [146] There do exist orbits within these empty regions where objects can survive for the age of the Solar System. These resonances occur when Neptune's orbital period is a precise fraction of that of the object, such as 1:2, or 3:4. If, say, an object orbits the Sun once for every two Neptune ...
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).
VSOP87 Heliocentric ecliptic orbital elements for the equinox J2000.0; the 6 orbital elements, ideal to get an idea of how the orbits are changing over time VSOP87A Heliocentric ecliptic rectangular coordinates for the equinox J2000.0; the most useful when converting to geocentric positions and later plot the position on a star chart
Another common form of resonance in the Solar System is spin–orbit resonance, where the rotation period (the time it takes the planet or moon to rotate once about its axis) has a simple numerical relationship with its orbital period. An example is the Moon, which is in a 1:1 spin–orbit resonance that keeps its far side away from
In astronomy, a resonant trans-Neptunian object is a trans-Neptunian object (TNO) in mean-motion orbital resonance with Neptune.The orbital periods of the resonant objects are in a simple integer relations with the period of Neptune, e.g. 1:2, 2:3, etc. Resonant TNOs can be either part of the main Kuiper belt population, or the more distant scattered disc population.
Note that the semi-major axis is proportional to the 2/3 power of the orbital period. For example, planets in a 2:3 orbital resonance (such as plutinos relative to Neptune) will vary in distance by (2/3) 2/3 = −23.69% and +31.04% relative to one another. 2 Ceres and Pluto are dwarf planets rather than major planets.