Search results
Results from the WOW.Com Content Network
From top to bottom: x 1/8, x 1/4, x 1/2, x 1, x 2, x 4, x 8. If x is a nonnegative real number, and n is a positive integer, / or denotes the unique nonnegative real n th root of x, that is, the unique nonnegative real number y such that =.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
If the expressions a and b are polynomials, the algebraic fraction is called a rational algebraic fraction [1] or simply rational fraction. [2] [3] Rational fractions are also known as rational expressions.
For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1. If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0.
2. Equivalence class: given an equivalence relation, [] often denotes the equivalence class of the element x. 3. Integral part: if x is a real number, [] often denotes the integral part or truncation of x, that is, the integer obtained by removing all digits after the decimal mark.
For example, antiderivatives of x 2 + 1 have the form 1 / 3 x 3 + x + c. For polynomials whose coefficients come from more abstract settings (for example, if the coefficients are integers modulo some prime number p , or elements of an arbitrary ring), the formula for the derivative can still be interpreted formally, with the coefficient ...
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.
where c 1 = 1 / a 1 , c 2 = a 1 / a 2 , c 3 = a 2 / a 1 a 3 , and in general c n+1 = 1 / a n+1 c n . Second, if none of the partial denominators b i are zero we can use a similar procedure to choose another sequence { d i } to make each partial denominator a 1: