Search results
Results from the WOW.Com Content Network
Figure 10: Amplitude diagram of a 10th-order electronic filter plotted using a Bode plotter. The Bode plotter is an electronic instrument resembling an oscilloscope, which produces a Bode diagram, or a graph, of a circuit's voltage gain or phase shift plotted against frequency in a feedback control system or a filter. An example of this is ...
Lattice and bridged-T equalizers are circuits which are used to correct for the amplitude and/or phase errors of a network or transmission line. Usually, the aim is to achieve an overall system performance with a flat amplitude response and constant delay over a prescribed frequency range, [1]: 128 [2]: 679 by the addition of an equalizer. In ...
Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.
Lissajous curves can also be generated using an oscilloscope (as illustrated). An octopus circuit can be used to demonstrate the waveform images on an oscilloscope. Two phase-shifted sinusoid inputs are applied to the oscilloscope in X-Y mode and the phase relationship between the signals is presented as a Lissajous figure.
The Bode plot of a first-order low-pass filter. The frequency response of the Butterworth filter is maximally flat (i.e., has no ripples) in the passband and rolls off towards zero in the stopband. [2] When viewed on a logarithmic Bode plot, the response slopes off linearly towards negative
Bode plot A plot of the amplitude and phase frequency response of a system, where the actual response is approximated by straight line segments. Boolean algebra (logic) A type of algebra that deals with values that can only hold values "true" and "false", of great use in design and analysis of digital systems. boost converter
Examples of pulse shapes: (a) rectangular pulse, (b) cosine squared (raised cosine) pulse, (c) Dirac pulse, (d) sinc pulse, (e) Gaussian pulse A pulse in signal processing is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value.
Sometimes other ratios are more convenient than the 3 dB point. For instance, in the case of the Chebyshev filter it is usual to define the cutoff frequency as the point after the last peak in the frequency response at which the level has fallen to the design value of the passband ripple.