enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    An equivalent definition of a vector space can be given, which is much more concise but less elementary: the first four axioms (related to vector addition) say that a vector space is an abelian group under addition, and the four remaining axioms (related to the scalar multiplication) say that this operation defines a ring homomorphism from the ...

  3. Orientation (vector space) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(vector_space)

    A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called unoriented. In mathematics , orientability is a broader notion that, in two dimensions, allows one to say when a cycle goes around clockwise or counterclockwise, and in three dimensions when a figure is left ...

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction.

  5. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction.

  6. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    One advantage to this approach is the flexibility it gives to users of the geometry. Thus in differential geometry , a line may be interpreted as a geodesic (shortest path between points), while in some projective geometries , a line is a 2-dimensional vector space (all linear combinations of two independent vectors).

  7. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    Also, a three-dimensional projective space is now defined as the space of all one-dimensional subspaces (that is, straight lines through the origin) of a four-dimensional vector space. This shift in foundations requires a new set of axioms, and if these axioms are adopted, the classical axioms of geometry become theorems.

  8. Real coordinate space - Wikipedia

    en.wikipedia.org/wiki/Real_coordinate_space

    Although the definition of a manifold does not require that its model space should be R n, this choice is the most common, and almost exclusive one in differential geometry. On the other hand, Whitney embedding theorems state that any real differentiable m -dimensional manifold can be embedded into R 2 m .

  9. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F. Every vector space over F contains a subspace isomorphic to this one. The zero vector space is conceptually different from the null space of a linear operator L, which is the kernel of L.