Search results
Results from the WOW.Com Content Network
In Java, a LinkedList can only store values of type Object. One might desire to have a LinkedList of int, but this is not directly possible. Instead Java defines primitive wrapper classes corresponding to each primitive type: Integer and int, Character and char, Float and float, etc.
C and C++ perform such promotion for objects of Boolean, character, wide character, enumeration, and short integer types which are promoted to int, and for objects of type float, which are promoted to double. Unlike some other type conversions, promotions never lose precision or modify the value stored in the object. In Java:
Floating-point String Array Associative array/Object; Ion: null null.null null.bool null.int null.float null.decimal null.timestamp null.string null.symbol null.blob null.clob null.struct null.list null.sexp. true: false: 685230-685230 0xA74AE 0b111010010101110: 6.8523015e5 "A to Z" ''' A to Z '''
Collection classes are Java API-defined classes that can store objects in a manner similar to how data structures like arrays store primitive data types like int, double, long or char, etc., [2] but arrays store primitive data types while collections actually store objects. The primitive wrapper classes and their corresponding primitive types are:
The Java virtual machine's set of primitive data types consists of: [12] byte, short, int, long, char (integer types with a variety of ranges) float and double, floating-point numbers with single and double precisions; boolean, a Boolean type with logical values true and false; returnAddress, a value referring to an executable memory address ...
The array, set and dictionary binary types are made up of pointers - the objref and keyref entries - that index into an object table in the file. This means that binary plists can capture the fact that - for example - a separate array and dictionary serialized into a file both have the same data element stored in them.
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23 ) × 2 127 ≈ 3.4028235 ...
Flyweight objects are divided into two components: an invariant component that is shared between all flyweight objects; and a variant, decorated component that may be partially shared or completely unshared. This partitioning of the flyweight object is intended to reduce memory consumption. The decorators are typically cached and reused as well.