Search results
Results from the WOW.Com Content Network
Köhler theory combines the Kelvin effect, which describes the change in vapor pressure due to a curved surface, with Raoult's Law, which relates the vapor pressure to the solute concentration. [ 1 ] [ 2 ] [ 3 ] It was initially published in 1936 by Hilding Köhler , Professor of Meteorology in the Uppsala University.
At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [1] 760 Torr, 101.325 kPa, or 14.69595 psi. For example, at any given temperature, methyl chloride has the highest vapor pressure of any of the liquids in the chart.
Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere. Earth's early atmosphere consisted of accreted gases from the solar nebula, but the atmosphere changed significantly over time, affected by many factors such as volcanism, impact events, weathering and the evolution of ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa ), which is equivalent to 1,013.25 millibars , [ 1 ] 760 mm Hg , 29.9212 inches Hg , or 14.696 psi . [ 2 ]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Algebraic expansion of that equation, ignoring higher orders of due to its typical order in Earth's atmosphere of , and substituting with its constant value yields the linear approximation T v ≈ T ( 1 + 0.608 w ) . {\displaystyle T_{v}\approx T(1+0.608w).}
The vapour pressure above the curved interface is then higher than that for the planar interface. This picture provides a simple conceptual basis for the Kelvin equation. The change in vapor pressure can be attributed to changes in the Laplace pressure. When the Laplace pressure rises in a droplet, the droplet tends to evaporate more easily.